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Abstract. The Modern Portfolio Theory of Markowitz maximized portfolio expected return subject
to holding total portfolio variance below a selected level. Digital Portfolio Theory is an extension
of Modern Portfolio Theory, with the added dimension of memory. Digital Portfolio Theory decom-
poses the portfolio variance into independent components using the signal processing decomposition
of variance. The risk or variance of each security’s return process is represented by multiple periodic
components. These periodic variance components are further decomposed into systematic and unsys-
tematic parts relative to a reference index. The Digital Portfolio Theory model maximizes portfolio
expected return subject to a set of linear constraints that control systematic, unsystematic, calendar
and non-calendar variance. The paper formulates a single period, digital signal processing, portfo-
lio selection model using cross-covariance constraints to describe covariance and autocorrelation
characteristics. Expected calendar effects can be optimally arbitraged by controlling the memory or
autocorrelation characteristics of the efficient portfolios. The Digital Portfolio Theory optimization
model is compared to the Modern Portfolio Theory model and is used to find efficient portfolios with
zero calendar risk for selected periods.
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1. Introduction

The purpose of this study is to formulate the portfolio selection model to allow
control of periodic risk factors using digital signal processing techniques. As with
many digital signal-processing applications the payoff is substantial. The Digital
Portfolio Theory model not only allows portfolio autocorrelation characteristics to
be controlled in a one period model, but permits high definition of portfolio risk
characteristics selected from very large universes. Financial return signals gener-
ated by stochastic processes will be described not only by their mean and variance,
but also by their autocorrelation using a frequency domain representation. By de-
scribing finite sequences of returns as digital signals, an expression for the portfolio
variance is derived that depends on unconditional autocovariance information in
addition to unconditional variances and covariances. The Digital Portfolio Theory
model uses the discrete-time signal processing definition of portfolio variance to
derive a set of linear variance constraints to the Markowitz Modern Portfolio The-
ory return maximization model. The Digital Portfolio Theory optimization problem
manages the risk characteristics of the optimal portfolio by controlling calendar
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and non-calendar, systematic and unsystematic components of the portfolio’s risk.
Controlling the periodic risk structure of the selected portfolio has become more
important as a result of growing awareness of periodic calendar anomalies. The in-
formation set of the investor at the time portfolio decisions are made now includes
estimates of calendar anomalies at weekly, monthly, quarterly, yearly and 4-year
turning points. These calendar anomalies describe the stationary periodic timing
elements of the market macrostructure.

The literature on these anomalies is large and growing. Linn and Lockwood
(1988) and Hensel and Ziemba (1996) examined a monthly effect with greater
return in the first half of the month. Beller and Nofsinger (1998) examined differ-
ences in monthly volatilities. Penman (1987) found a quarterly effect not related
to firm size with higher returns in the first month of the quarter. Wachtel (1942)
discovered a summer effect with bull market tendencies in summer months. The
turn-of-the-year effect was found to be primarily a small firm effect by Rozeff
and Kinnery (1976) and Keim (1983). Booth and Booth (1999) have measured an
election effect with returns twice as large in the second two years of the presidential
term and larger for small firms. Additionally, some investors believe that periodic
effects may exist for much longer periods of time, such as 30, 40 or 60 years. Return
series with periodic anomalies are not memoryless or random walks but are non-
memoryless with non-zero autocorrelation. These processes may be at least weakly
stationary. While return volatility processes are covariance non-stationary for short
time periods, longer run periods display features of covariance stationarity, i.e. have
variance and autocovariance independent of real time.

Studies in mean reversion have found 8-year mean reversion (see Poterba and
Summers, 1988) and 4-year mean reversion (see Fama and French, 1988; Thorley,
1995). Fama and French (1988) find that a tendency for negative autocorrelation of
long horizon return is always observed, although with less significance after 1940.
Fama (1991) finds that variance tests provide weak statistical evidence against the
hypothesis of no autocorrelation (random walk) despite low power resulting from
short sample lengths.

There is growing recognition that long memory dependence is an inherent fea-
ture of return processes generated by financial systems. See, for example studies
by Baillie (1996) and Bollerslev and Mikkelsen (1996). Andersen and Bollerslev
(1997) utilize spectral analysis to measure long memory because of its ability to
resolve the stationary components of long-period variance.

Models for testing long memory or persistence in a process often test for
a slowly decaying autocorrelation function assuming the process is weakly sta-
tionary. Breidt, Crato, and de Lima (1998) present evidence indicating that the
stationary long memory model provides an alternative to non-stationary volatility
modeling. While market microstructure studies find evidence of covariance non-
stationarity of short-run time-varying volatility processes, longer memory studies
(Bollerslev and Engle, 1993) suggest that longer run return processes may be
weakly stationary. Long memory may be the result of inherent properties of the
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return generating process rather than a result of external shocks inducing structural
shifts in the volatility process.

Because long memory processes can be treated as weakly stationary, spectral es-
timators are increasingly being used in the analysis of long memory in the variance
of stock returns (see Breidt, Crato, and de Lima, 1998). Long memory fractionally
integrated processes are characterized by positive autocorrelation functions with
hyperbolic decay and variance spectral density dominated by long periods, or low
frequencies (see Baillie, 1996). Granger and Ding (1996) find evidence of long
memory using the spectral density of absolute returns.

Digital Portfolio Theory controls the solution portfolio’s sensitivity to calendar
anomalies by controlling the portfolio calendar variance components. Regardless
of the real or imagined existence of these anomalies, investors who believe calendar
anomalies exist or believe returns do not follow a random walk, require a portfolio
selection model which will adjust portfolio risk to correspond to their expectations
and desired risk exposure. In addition to allowing control of the autocorrelation of
the portfolio return process, the Digital Portfolio Theory formulation permits the
mean-variance efficient set to be closely approximated, using a linear programming
(LP) solution. The model can dramatically improve the array of available portfolio
risk positions and allow timing considerations to be included in the portfolio de-
cision by selecting efficient portfolios with risk characteristics matching investor
calendar expectations and holding periods.

Section 2 reviews the historical development and basic properties of discrete
signal processing. Section 3 describes Modern Portfolio Theory and previously
developed algorithms. Section 4 applies signal-processing concepts to return se-
quences. Section 5 discusses the natural frequencies of financial signals. Section 6
explains the relationship between autocorrelation, variance spectral density and
memory. Section 7 derives the variance of the portfolio return signal by adding
systematic and unsystematic components of periodic risk. Section 8 derives the
Digital Portfolio Theory portfolio selection optimization model. Section 9 dis-
cusses the criterion of utility maximization versus arbitrage in Digital Portfolio
Theory. Section 10 examines the concept of time conditioning of the optimal
portfolios. Section 11 looks at the question of a multiple period portfolio selec-
tion model. Section 12 describes the estimation of the Digital Portfolio Theory
model parameters using short time series signal processing techniques. The perfor-
mance of Digital Portfolio Theory for a small universe of securities is examined in
Section 13.

2. Continuous versus Discrete-Time Fourier Analysis

One important way to model the stationary periodic risk structure of a return
process is to decompose the variance using digital signal processing. How is it
possible that a digital revolution is firmly established in the market place today and
yet signal-processing techniques are not routinely applied to financial signals? The
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historical development of the discrete Fourier transform required to examine the
spectral density function is important in order to appreciate the implementation of
digital signal processing to financial signals. In the ’20s and ’30s continuous-time
Fourier analysis was used to study electrical circuits and techniques of discrete-
time Fourier analysis were developed to solve problems in numerical analysis and
time series analysis. In 1930 Wiener published the first formal statistical treatment
of signal processing using continuous-time Fourier analysis to define the vari-
ance spectral density at a continuum of frequencies. The increased use of digital
computers in the ’40s and ’50s encouraged developments in discrete-time signal
processing methods in engineering. However, by the ’50s and ’60s the calcula-
tion of continuous or discrete Fourier transforms was a prohibitive computational
burden using slow speed and high cost mainframe computers.

In the mid ’60s an algorithm know as the FFT (Fast Fourier Transform) was
developed, greatly accelerating the pace of digital signal processing and applica-
tions. The digital FFT algorithm (Blackman and Tukey, 1959) was inherently a
discrete-time concept. The FFT reduced the computational time for discrete Fourier
transforms by orders of magnitude. The number of operations (adds and multiplies)
was reduced from N2 to N adds and N/2 multiplies. Much of the subsequent de-
velopment in digital signal processing and the digital revolution reflects the nature
of the FFT algorithm. Finite series as opposed to infinite series in continuous time
were used to describe signals. In addition, signals were restricted to 2n periods
in length in order to realize the FFT’s substantial computational efficiency. The
transition from 16, to 32, to 64, to 128-bit architectures in the PC and other digital
hardware and software is an artifact of the FFT. Ironically, the FFT algorithm has
been largely responsible for the slow growth of the application of digital signal
processing to financial signals. Financial signals require lengths of 3, 6, 12, 24, 48,
etc. in order to capture longer-term calendar risk. The high precision offered by
high-resolution digital signal processing methods depends on sampling at signal
lengths that correspond to the natural frequencies of the financial system. Even
today economic statistical software packages are often restricted to signal lengths
of 2n (4, 8, 16, 32, 64, 128, etc.) for computing spectral estimators.

In the 1970s Granger and Morgenstern (1970) and Praetz (1979) were among
the first researchers to apply the FFT algorithm to continuous financial signals. At
the same time, by the mid ’70s the engineering community had derived a com-
prehensive theory of statistical digital linear signal processing systems and had
evolved as a set of exact properties and mathematics applicable to the discrete-time
domain. Digital signal processing systems theory utilizes more powerful math-
ematics than is available for continuous-time signals. For example, the integral
required for the convolution of two signals in continuous-time becomes a simple
summation in discrete-time because addition and subtraction for digital signals
replace integration and differentiation in continuous-time. This property in con-
junction with very high speed is responsible for today’s digital revolution. In the
’80s and ’90s new techniques for high resolution finite discrete statistical signal
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processing, particularly for short data sequences, have become available. These
new techniques are suited to the analysis of speech signals as well as stochastic
digital financial signals (see Marple, 1987). Within the past five years, the greater
speed of processors allows discrete Fourier transforms to be computed without us-
ing the FFT algorithm and as a result, financial researchers and practitioners are no
longer constrained to signal lengths of 2n. Today Fourier transforms can be directly
computed for signal lengths of 3 ∗ n using monthly returns, these lengths can be
used to examine the calendar variance components of the market’s macrostructure.1

2.1. PROPERTIES OF DISCRETE FOURIER TRANSFORMS

Statistical digital signal-processing involves the recovery of information from a
signal that is embedded in noise. This is accomplished by repeatedly applying the
discrete Fourier transform to the random signal, resulting in the variance spectral
density of the process. In order to appreciate the usefulness of the discrete Fourier
transform to financial signal processing, two important properties should be kept
in mind. First, the discrete Fourier transform possesses the property of complete
reciprocity. In other words, from the discrete Fourier transform of a time series of
length N , the original series can be uniquely returned using the inverse discrete
Fourier transform. Secondly, there is no implication that the original series is or
must be periodic in order to compute the discrete Fourier transform. The discrete
Fourier transform it is a non-parametric mapping from the time domain to the
frequency domain.

2.2. THE UNIQUE NATURE OF FINANCIAL SIGNALS

Financial signal processing has been limited in development primarily because
financial empirical researchers have not taken advantage of digital signal process-
ing techniques. Additionally, progress has been impeded by the complexity that
will be required in specialized algorithms needed for high resolution of financial
digital signals. Like many digital signal processing applications that are charac-
terized by complex algorithms, financial signal processing would not be possible
using continuous-time signals. Speech processing, digital TV, digital audio, image
enhancement, pattern recognition, digital telecommunication systems, data com-
pression, geophysics and meteorological modeling all utilize digital algorithms.
Greatly improved performance, low noise, high resolution, high accuracy, and high
dependability characterize these digital systems.

Digital processing is having a dramatic impact on speech processing. It is
interesting to note that financial signals are in several aspects similar to speech
signals in that both speech signals and financial signals do not have the problem
of random frequencies. Because of the shape of the vocal cavity, speech signals
have known frequencies. Many financial market participants believe that financial
markets have known frequencies based on the institutional nature of the markets
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and their calendar dependence. For example, one economic reason for annual de-
pendence in financial signals could be that firm’s fiscal year ending dates are not
distributed with equal probably across all calender dates. While speech signals
are non-stationary and time-varying, they can be treated as stationary for short
periods (quasi-stationary analysis). Speech signals are stationary for periods up
to half a second while financial signals display characteristics of stationarity for
periods of a month and longer. Financial signals and speech signals differ in
terms of their sampling rates. Speech signals are sampled in milliseconds while
the stationary components of financial signals must be sampled monthly. Noise
reduction techniques for short signals being developed for speech processing or
pattern recognition may be adapted to financial signals. Digital image processing
has made significant advances as a result of various techniques such as artificial
intelligence and optimization to achieve image restoration and enhancement in the
presence of nonlinear noise. The Digital Portfolio Theory utilizes discrete math-
ematics in conjunction with an optimization model to find desired portfolios of
financial signals from very large universes of security signals.

3. The Markowitz Modern Portfolio Theory Portfolio Selection Model

The mean-variance problem originally formulated by Markowitz (1952) can be
written either as maximization or a minimization problem. The maximization
problem is the preferred formulation for the investor since it is intuitively more
appealing to maximize return and constrain risk. The maximization formulation is
convenient for adding constraints and/or integer variables, which was difficult us-
ing the risk minimization problem. The maximizing formulation also allows other
linear functions such as proportional transactions costs to be added in the objective
function and fixed costs to be imposed using integer variables. The fact that most
financial problems can be represented using a maximum flow network structure
that is constrained by flow conservation has been recognized by Crum, Klingman
and Travis (1979), Mulvey (1987), Mulvey and Vladimirou (1991), Jones (1992),
and Dantzig and Infanger (1993). In Equations (1) and (2) the Modern Portfolio
Theory model assumes that autocorrelations are zero or are of no importance to the
investor.

Maximize

E(r̃p(t)) =
N∑

j=1

WjEj (r̃(t)) =
N∑

j=1

Wjµj (1)

subject to

var(r̃p(t)) =
N∑

i=1

N∑
j=1

WiWjcov(r̃i (t), r̃j (t)) ≤ c (2)
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N∑
j=1

Wj = 1 ,

where Wj = the fraction invested in security j ; r̃p(t) = stochastic return on the
portfolio in period t ; N = number of securities in the universe, j = 1, 2, . . . N ;
c = right-hand side (RHS) constant.

Implementation of Modern Portfolio Theory involves two interdependent prob-
lems. The first is the data representation problem. The covariance matrix (2)
has been the biggest difficulty encountered in attempts to find large scale mean-
variance efficient optimizations because of the density of non-linear terms. The
second problem is the computational procedure or non-linear programming algo-
rithm needed to calculate efficient portfolios. Significant advances are now being
made in non-linear programming techniques using interior point methods.

Previous mean-variance algorithms can be categorized into two broad ap-
proaches: those that minimize variance and those that maximize expected return.
Each of these categories can be further subdivided into algorithms that give exact
solutions to the mean-variance efficient set and algorithms that give approximate
solutions. Exact algorithms that minimize variance include the Markowitz (1956),
Markowitz, Todd, Xu, Yamane (1992) critical line method, the Wolfe (1959) sim-
plex method for quadratic programming, and the Alexander (1976) algorithm using
the Lemke (1965) complementary pivot solution.

Variance minimization algorithms that give approximate solutions have been
developed to accommodate large-scale problems. These techniques simplify the
covariance matrix using index or factor methods. The Sharpe (1963) diagonal
method uses a single index to simplify the covariance matrix. Other researchers
have proposed multi-index or multi-factor models that are similar in concept to the
single index model but try to capture some unsystematic influences while taking
advantage of a sparse covariance matrix (e.g., Cohen and Pogue, 1967; Elton and
Gruber, 1973; Rosenberg, 1974; Pang, 1980; Markowitz and Perold, 1981; Perold,
1984).

Elton, Gruber and Padberg’s (1976) single index model for finding the mean-
variance efficient portfolios is popular because it does not require quadratic
programming or an LP approximation. This approach, however, does not lend
itself well to the addition of constraints commonly used in portfolio management.
For example, to add upper bounds on the decision variables presents a non-trivial
problem (see Elton, Gruber and Padberg, 1977).

Algorithms that maximize return subject to a quadratic constraint set utilize
substitute linear constraints. Sharpe (1971) developed an approximate algorithm
that used a piece-wise linear approximation to the covariance matrix. Glover and
Jones (1988) developed a dual feasible direction algorithm that gives the exact
solution using a cross-covariance constraint set. In practice software packages that
solve for efficient mean-variance portfolios from large universes are still not read-
ily available to the researcher or the investor. Digital Portfolio Theory offers a
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linear model that will allow efficient portfolios to be found using conventional LP
packages. This model is more intuitively understandable than the original Modern
Portfolio Theory model.

4. The Digital Signal Processing Model

Stochastic digital signal processing is concerned with representation, transforma-
tion, manipulation and estimation of signals and the information they contain.
Digital Portfolio Theory assumes that return processes are locally wide sense sta-
tionary and moments can be calculated by taking time series averages (ergodic).
Essential to digital technology is discrete measurement of finite length processes.
Digital signal processing represents return sequences with finite series as opposed
to the infinite series required in continuous time. Time series security returns are
considered digital signals since they are constructed from price data at discrete-
time intervals, such as daily, weekly, or monthly, etc. Digital signal processing
transforms finite length discrete-time series sequences into the sum of periodic
exponential functions with the period of each term of the summation decreas-
ing harmonically in length. The discrete Fourier Theorem states (see Jenkins and
Watts, 1969) that any finite discrete stationary stochastic process can be described
non-parametrically by a finite sum of complex exponentials. In sine form a digital
return process can be represented as follows:

r̃j [n] = µj +
K∑

k=1

Rkj sin(kωn + θ̃kj ) n = 1, 2, 3, . . . , T , (3)

where r̃j [n] = stochastic return of security j in period nδt ; n = an integer indi-
cating the nth place in the finite sequence; µj = expected return for security j ;
Rkj = amplitude of the kth periodic term for signal j ; θkj = kth random phase
of the j th return signal; ω = angular frequency of the longest period sampled
ω = 2π/T ; K = number of harmonic period term (K = T /2δt); T = length of
the digital signal and 1st (k = 1) harmonic; δt = time interval between samples.

The Fourier series, Equation (3) may be written in exponential form, in sine
form, in cosine form, or as the sum of sine and cosine terms. The sine form is useful
in this context since it is convenient for presenting the addition of digital financial
signals using traditional vector or phasor algebra. Here K, Rkj and ω (omega)
are constants and the θ̃kj are independent random variables. The amplitudes, Rkj ,
have units of standard deviation (risk). The brackets [ ] indicate a digital process.
The probability distributions of the phase angles, θ̃k, are uniformly distributed over
(0,2π ). Since the phase angles are random variables, Equation (3) cannot be used
to solve for the returns. The K sine functions form a complete orthogonal set. Each
of the K terms in (3) has mean zero and is uncorrelated to other harmonic terms.
Equation (3) has the following characteristics:

E(r̃j [n]) = µj (4)
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var(r̃j [n]) = 1

2

K∑
k=1

R2
kj . (5)

The variance of the digital return process in Equation (5) is not dependent on θ̃k.
The variance of the return signal (5) is made up of the sum of K variance terms,
R2

k . Following Modern Portfolio Theory, Digital Portfolio Theory will utilize this
variance as the absolute measure of risk of the return process. The estimates of the
squared amplitudes, R2

k , describe the variance spectral density or periodic volatility
pattern of a financial signal. The variance spectral density gives the same informa-
tion as the autocorrelation function in the time domain. The relative amplitudes
measure the presence of autocorrelation. For example, when the variance of a
security’s digital return signal has a large yearly component, the amplitude value,
Rk, corresponding to a yearly variance will be larger (or peak) relative to other
amplitudes. When a digital return signal follows a random walk, all Rk values will
be equal, or insignificantly different, the autocorrelation at all lags will be zero and
the process is called memoryless.

The K terms in the summations in (3) and (5) are called harmonics since the
lengths of their periods decrease harmonically. The number of periods, K, is equal
to one half the signal length, T . The length of the kth harmonic period, pk, is given
by Equation (6).

pk = T δτ

k
k = 1, 2, . . . , K = T /2δt . (6)

The frequency is inversely proportional to the period length. There are K periods
and K discrete periodic variance components that make up the total variance in
(5). Suppose T is chosen as 48 months with a sampling interval of one month, then
k = 1 gives a four year risk component, k = 4 gives a one year risk term, and k =
16 gives a quarterly (three month) risk term, etc. The period of the first harmonic
(k = 1) is T , the signal length. Statistical digital signal processing of return signals
estimates the values of the amplitudes, Rk, by averaging discrete Fourier transforms
over many repetitions of the signal. The result is called the variance spectral density
or risk spectrum of the stochastic process. Digital Portfolio Theory describes asset
risk by these K variance components corresponding to the K unique periods, or
frequencies in the digital financial signal’s volatility.

The cross-covariance or cross-correlation describes the relationship between
two return signals. The covariance can be written as the sum of K cross-covariances
between security i and security j .

cov(r̃i[n], r̃j [n]) = 1

2

K∑
k=1

RkiRkj cos(θkij) , (7)

where θkij = the kth phase-shift between security i and j .
The phase-shift gives the lead or lag between two processes at the same fre-

quency. The cross-correlation, ρkij (rho), between the kth periodic component of
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the processes of security i and security j is equal to the cosine of the phase shift
(see Wiener, 1970).

ρk(r̃i[n], r̃j [n]) = cos(θkij) . (8)

The phase-shift corresponds to correlation. Like correlation, phase-shift is not a
random variable. The phase-shifts between two random processes are measured
using cross spectral analysis. There is always zero cross-correlation between two
random processes at different periods or frequencies since they are orthogonal.

5. Resonate Frequencies of Financial Signals: Calendar versus
Non-Calendar Risk

Resonate or carrier frequencies may result from the institutional and cultural calen-
dar structure of the markets. To benefit from high resolution digital techniques, the
sampling interval and the signal length must correspond to this periodic calendar
structure. While news arrivals may influence different assets in different ways,
they may have been generated by factors related to the overall economy, inducing
a covariance stationary process. The interaction of a large number of regularly
scheduled macroeconomic announcements may result in seasonal and long run
calendar memory or autocorrelation. This section will show that the K terms of the
variance spectral density function in Equation (5) can be broken into calendar and
non-calendar risk components. In Equation (6) the selection of δt , the sampling
interval, plays an important role in determining the measured period length and
frequency. For example, one difficulty encountered with financial signals is that the
number of weeks per month and days per month is not integer. As a result, weekly
or daily sampling will not allow the resolution of important calendar periods since
52 or 260 are not divisible by 12. Most studies using spectral estimation have
found the low frequencies, or longer periods, dominate in explaining the variance
of financial signals. For instance, Cooper (1974) and Durlauf (1991) found periods
of one month and longer explain the largest amount of return variance. To describe
longer term variance characteristics financial signals should be sampled monthly
with signal lengths of 48 or 96 months. Since the 96-month signal may violate the
assumption of local stationarity in the signal processing model, the 48-month signal
can be used as the fundamental resonate frequency for financial return processes
generated in the market macrostructure. Table I gives the discrete harmonic period
lengths from Equation (6) for the 4-year signal sampled monthly.

With a 48-month signal length there are 24 periodic variance terms in Equation
(5). These can be separated into periods that represent meaningful calendar-time
intervals and those that do not. The calendar risk components correspond to insti-
tutionally relevant time periods. In this example, there are five calendar risk factors.
Shorter or longer calendar risk components might be measured, but these five
variance factors will still persist. An empirical study is not necessary to identify
the length of the calendar risk factors since they are common knowledge to all
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Table I. Calendar and non-calendar risk components with signal
length of T = 48 months. The unique periodic risk factors of a
four-year signal sampled monthly.

k Period Calendar k Period Calendar

pk risk pk risk

(months) factor (months) factor

1 48.0 4 year 13 3.7

2 24.0 2 year 14 3.4

3 16.0 15 3.2

4 12.0 1 year 16 3.0 1
4 year

5 9.6 17 2.8

6 8.0 18 2.7

7 6.9 19 2.5

8 6.0 1
2 year 20 2.4

9 5.3 21 2.3

10 4.8 22 2.2

11 4.4 23 2.1

12 4.0 24 2.0

investors. These periodic calendar risk components are the resonate frequencies
for all financial signals.

6. Autocorrelation and the Periodic Dimensions of Memory

While most economists are familiar with the autocorrelation function, the spectral
density function gives the equivalent information but focuses on a different aspect
of the nature of the time series while both describe the memory of the process.
There is an inverse relationship between the time and the frequency domains. The
autocorrelation function reflects the association between successive values of a
series while the spectral density describes how the variance of the random process
is distributed with frequency. Both represent the second moments of the process.
The autocorrelation function is described by the relationship between all explicit
time lags. If there is no autocorrelation in a series and therefore no memory, the
autocorrelation at all lags will be zero in the time domain. On the other hand, in
the frequency domain, the series with zero autocorrelation or no memory will have
a variance spectral density that is equally distributed at all frequencies.

A series with positive autocorrelation will result in a spectrum with large
variance at low frequency, or long periods. Conversely, a series with negative auto-
correlation will result in large variance at high frequency. A series that is periodic
will have an autocorrelation function that is also periodic with positive and negative
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values at different lags. At the same time, the variance spectrum will have a peak
corresponding to the frequency of the periodicity (see Jenkins and Watts, 1969).
In the frequency domain the periodic variance spectrum described by Equation (5)
defines the autocorrelation function. Since this description focuses on the stationary
components of risk at time interval differences, it is particularly appropriate for the
portfolio risk diversification problem. The computation of portfolio variance using
the autocorrelation function would be prohibitively complex in the time domain
but is possible in the frequency domain because the Fourier transform is type
invariant under addition. This allows periodic variance components for each asset
to be added to find the corresponding periodic portfolio risk characteristics. The
efficient digital mathematics used to combine variance components into portfolios
is described in the next section.

While there has been considerable research on describing short term time-
varying risk using ARIMA or GARCH models, digital signal processing allows the
inclusion of stationary components of long memory or stationary risk factors re-
lated to calendar anomalies or periodic announcement effects. Calendar anomalies
have been found to exist for as long as data has been collected. Methods such as
GARCH, wavelets, or atomic decomposition attempt to forecast the time location
and frequency characteristics of non-stationary and non-linear return generating
processes. These methods are important in signal analysis whenever transient be-
havior or discontinuities dominate a signal. For example, wavelet analysis can be
used to describe a signal that is localized in time. Spectral estimators offer no infor-
mation about the time location of the stochastic process volatility, but measure only
stationary risk characteristics of the overall volatility process. Consequently both
Digital Portfolio Theory and Modern Portfolio Theory utilizes portfolio variance
to achieve diversification, they are not prediction models.

7. Signal Processing Measurement of Risk and the Covariance Matrix

Risk in Digital Portfolio Theory is defined by K independent periodic components
of the total variance. The units of risk are the same as those in Modern Portfolio
Theory. Variance components are periodically related and sum to the total variance.
This section derives the portfolio variance when asset return signals are generated
by Equation (3). To compute the portfolio variance, the portfolio amplitudes, Rkp ,
for each of the K risk components in Equation (5) must be computed. In order to
add the return signals of individual securities, their phase-shifts must be estimated.
To find the portfolio autocorrelation structure in the frequency domain the phase
shifts, θkmj, or lead or lag relationship between all securities must be measured. The
best way to measure phase shifts for each security is to measure them relative to
a reference series or signal. Analogous to the single index method, the K phase-
shifts, θkmj, for the j th security’s signal can be measured relative to an index return
signal. The index return process may or may not be generated by an efficient market
portfolio. In order to find portfolio variance, the complex addition of digital signals
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Figure 1. Complex addition of risk phasors to find Rkp . To compute the portfolio risk the
periodic risk phasors can be added across securities by adding imaginary and real components
separately. The cosine terms represent systematic risk relative to a reference index since the
in-phase components will have phase-shift, θkmj equal to zero or 180 degrees. The sine terms
represent unsystematic risk since the out-of-phase components will have phase-shift, θkmj
equal to 90 or 270 degrees.

can be used. To find the portfolio amplitudes, Rkp, it is convenient to introduce the
concept of a risk phasor or rotating vector as shown in Figure 1. The risk phasor
has magnitude and direction. The magnitude of the risk phasor for security j for
periodic risk factor k is its amplitude, Rkj , or standard deviation for the kth risk
component. The direction of the risk phasor for security j for risk factor k is the
phase-shift, θkmj, between the return signal of security j and a reference signal
m. Phase-shift does not give any time location information but measures relative
covariance information.

To find the portfolio variance, the weighted risk phasors must be added. This can
be accomplished by replacing the K random variables, θ̃kj , in Equation (3) with the
K phase-shifts, θkmj. Since only the phase-shift is important for diversification the
kωn in Equation (3) is dropped. Since the K phasors for each security are orthog-
onal, they can be added for each period or frequency separately. By definition the
sine term in Figure 1 is the imaginary part of the risk phasor. The cosine term is the
real part. When the phase-shift is measured relative to a reference index, the cosine
terms represent the amount of portfolio variance explained by systematic risk with
respect to that index. If the phase-shift is zero (perfectly in phase), the cosine is
one. The cosine or real part of the securities return process is in phase with the
market index representing systematic risk. When the phase shift is 180 degrees, the
cosine is minus one, representing negative systematic risk. In the Digital Portfolio
Theory model systematic risk can be both positive and negative representing high
positive or negative cross correlation (Equation (8)). In the same way, the sine terms
represent unsystematic risk since the sine of 90 degrees equals one.



300 C. KENNETH JONES

Since the systematic and unsystematic parts of the risk phasor are at right
angles, they can be added. The resultant portfolio amplitude, Rkp, is found by
applying the Pythagorean Theorem.

Rkp =






N∑
j=1

WjRkj cos θkmj




2

+



N∑
j=1

WjRkj sin θkmj




2



1
2

. (9)

Using Equation (5) the variance of the resultant portfolio return signal can be
written:

var(r̃p[n]) = 1

2

K∑
k=1







N∑
j=1

WjRkj cos θkmj




2

+



N∑
j=1

WjRkj sin θkmj




2

 (10)

Portfolio risk = 1

2

K∑
k=1

((systematic riskpk)
2 + (unsystematic riskpk)

2) .

Since the variance (10) of the portfolio return signal is assumed locally stationary
it is not time dependent. The derivation of portfolio variance did not assume any
distribution for the underlying security return processes. Consequently the distribu-
tion of the security returns may be skewed or non-normal. Furthermore the security
return processes may be random walks or may be non-memoryless with non-zero
autocorrelations.

The risk phasor allows systematic and unsystematic risk relative to a reference
signal to be defined and measured in a more precise way than was available using
covariance measures. The definitions of systematic and unsystematic risk in this
context are related to the index being used to measure phase-shift. For example,
suppose an investor wishes to profit from the January effect. This investor may
want to increase exposure to yearly risk but since the January effect is primarily a
systematic market phenomenon it is the systematic yearly risk relative to a market
index that the investor should be exposed to. A particular security may have a high
level of yearly risk but if most of this risk is not systematic the security would not
be useful for January effect arbitrage.

8. The Digital Portfolio Theory Model

In this section the periodic representation of portfolio variance is used to develop
a substitute constraint set for the traditional variance constrained mean-variance
model. Since each of the K pairs of cosine and sine summations in (10) are orthog-
onal or uncorrelated, local efficiency must be reached with respect to each to find
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the efficient portfolio. The portfolio variance constraint (2) can therefore be written
as K independent cross-covariance constraints:




N∑
j=1

WjRkj cos θkmj




2

+



N∑
j=1

WjRkj sin θkmj




2

≤ bk

for k = 1, 2, 3, . . . , K .

(11)

The kth periodic component of portfolio variance will have an efficient frontier
in periodic risk-return space that is independent of the other components. The
efficient frontier in the kth risk-return dimension consists of the undominated
portfolios in that plane. The K constraints can be added as separate constraints
to the return maximization problem. These periodic constraints are still non-linear
but are independent and have a more symmetric form than the expression for
the covariance matrix given in Equation (2). The mathematical properties of the
discrete-time Fourier transform provide a highly efficient means of computing and
controlling periodic components of the portfolio variance that cannot be achieved
for continuous-time processes. The symmetry allows a set of substitute constraints
to replace each of the cross-covariance constraints in Equation (11).

Constraining the systematic and unsystematic variance terms separately creates
a relaxed constraint set. In the derivation of the variance of the portfolio’s return
signal in Figure 1, these terms were right-angle projections. To effectively constrain
the square of these terms, the systematic and unsystematic terms in (11) can each
be constrained to be less than a constant right-hand side, bk, and greater than the
negative of the same constant. The relaxed LP signal processing portfolio selection
model is:

Maximize

E(r̃p(t)) =
N∑

j=1

WjE(r̃j (t)) =
N∑

j=1

Wjµj . (12)

Subject to 4K constraints; k = 1, 2, 3, . . . , K

N∑
j=1

WjRkj sin θkmj ≤ bsk (13)

N∑
j=1

WjRkj sin θkmj ≥ −bsk (14)

N∑
j=1

WjRkj sin θkmj ≤ buk (15)
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N∑
j=1

WjRkj sin θkmj ≥ −bsk (16)

N∑
j=1

Wj = 1 (17)

Wj ≥ 0 j = 1, 2, 3, . . . , N , (18)

where bsk = kth systematic RHS; buk = kth unsystematic RHS.
Equations (12)–(18) give the Digital Portfolio Theory model formulation. Note

that it is a completely linear model and allows much greater control over the com-
ponents of portfolio variance. For each of the 24 periodic risk factors shown in
Table I there are 4 constraints resulting in 96 constraints to control portfolio risk.
These constraints allow the optimal portfolio allocation given the investors desired
exposure to each periodic variance contribution to the total portfolio variance. By
choosing appropriate values of the constants, bsk and buk , the signal processing
model allows diversification to be applied independently to the different periodic,
systematic, and unsystematic risk components that make up the portfolio variance.
This gives more control over the characteristics of the resultant efficient portfolios
selected. Additionally, because of the relative amplitudes, Rkp, of the solution port-
folio reflect the autocorrelation structure, memory characteristics of the efficient
portfolios can be controlled.

Because there are effectively K independent efficient frontiers a particular in-
vestor may select an efficient portfolios that has a high risk in the kth dimension
and simultaneously has low risk in the k+1 risk dimension. Another investor could
have some other combination of periodic risk preferences and therefore a quite
different efficient portfolio would be found using Digital Portfolio Theory. Two
investors with the same total risk tolerance may hold very different portfolios. Each
of the K efficient frontiers will be independent of investor preferences. In general
a particular investor’s optimal portfolio may not be the same as a representative
mean-variance investor or on the mean-variance efficient frontier. The collection
of efficient portfolios for different investor preferences will be bounded in mean-
variance space by the mean-variance efficient set. The right-hand-sides, bsk and
buk, in Equations (13)–(16) can be adjusted to give different efficient portfolios,
depending on the individual’s desired exposure to risk for systematic or unsys-
tematic components of the portfolio’s variance. By setting bsk = buk = 0 for a
particular value of k, efficient portfolios can be found with no risk do to the kth
periodic risk component.

An investor may be willing to accept a large amount of portfolio variance from
low frequency components (long time differences) and a small amount of variance
from high frequency components (short time differences) or vice versa. For ex-
ample, a particular investor may be willing to bear 4-year risk but not quarterly
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risk. Suppose an investor must buy a portfolio today. Additionally, suppose that
the investor believes that security returns may be adversely affected by quarterly
earnings announcements one month from today. The investor can solve for the
efficient portfolio with no systematic and unsystematic quarterly risk using Digital
Portfolio Theory. This portfolio will be made of securities whose return signals
are not sensitive to the risk associated with the quarterly earnings announcements,
therefore, the investor will be protected based on a forecast of quarterly earnings
below expectations. At the same time the investor may anticipate a four-year elec-
tion cycle with higher returns in the last 2 years. If his or her holding period will
include the second half of the election term, the investor may prefer efficient port-
folios with higher 4-year risk. Since this hypothetical election cycle anomaly is
systematic, this investor may not want to be exposed to 4-year unsystematic risk.

In Equation (18) the Wj variables are constrained to be non-negative. Short
selling can be added by dropping the non-negativity constraint. Allowing short
selling, efficient portfolios could be selected from a given universe of securities
that have only quarterly, or only yearly risk, etc. Jones (1992) has used these pure
periodic disturbance portfolios in an Arbitrage Pricing Theory (APT) model. The
maximization LP formulation of Digital Portfolio Theory allows the use of integer
variables to model fixed commission cost and other fixed costs. Additional linear
constraints can be added to control fundamental factors such as growth in earnings
per share, P/E, market capitalization, etc. in the solution portfolio.

The Digital Portfolio Theory model (12) with no short selling will find the same
efficient portfolios using an efficient index or an inefficient index. The reference
index need not be an efficient portfolio to find the efficient portfolios. If the index
is not a market index then systematic and unsystematic risk are measured relative
to this reference index. If the index used is a market portfolio, an approximate
capital market line (CML) can be found by setting the buk = 0 for all k and solving
the Digital Portfolio Theory model. As the number of securities in the universe
approaches the universe of all securities in the market this approximate CML will
approach the exact CML.

The solution to the signal processing portfolio selection model can be obtained
using LP. The problem can be rapidly solved for very large universes. In Modern
Portfolio Theory the quadratic covariance constraint in (2) contains N(N + 1)/2
different terms. In Digital Portfolio Theory the linear relaxed constraint set in (13)
to (16) contains 4KN terms. For example, for a universe of 20,000 securities the
portfolio variance for the Modern Portfolio Theory model requires over 200 million
terms. The Digital Portfolio Theory model requires less than 2 million terms with
K = 24.

9. Autocorrelation, Utility, and Arbitrage

Because there are K unique independent efficient frontiers in K risk dimensions
in Digital Portfolio Theory, the personal utility function in mean-variance space
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does not define the individuals optimal portfolio. While autocorrelation has not
previously been described in the single period Modern Portfolio Theory model the
effects of autocorrelation have been examined in the sequential investment problem
when yields are serially correlated. In this case Harkansson (1971) used logarith-
mic utility functions to maximize the end of the investment horizon terminal wealth
and postulated that this would induce single period utility functions which are
myopic or independent of yields beyond the current period. If myopic utility is
the case, investment horizon is irrelevant and risk aversion determines the optimal
portfolio. A myopic decision strategy will treat every period decision as a signal
period decision and require a utility function that allows the investment weights to
be independent of wealth. Harkansson (1979) examined the situation when auto-
correlation exists in yields and suggested that the only utility that maximizes the
log of the end of period wealth results in myopic optimal decisions in each period.
We know from the Digital Portfolio Theory model that if calander effects do exist,
returns will have non-zero autocorrelations and that the single period portfolio
decision will treat the components of periodic risk differently in different periods.
It seems likely then that the utility functions in a particular periodic risk return
subspace will not be the same from period to period. Additionally the trade off
between the utility designated to each periodic risk component will change from
period to period.

In the case of mean-variance autocorrelation optimization (Digital Portfolio
Theory), it may be appropriate to replace the criterion of subjective expected utility
maximization with the principle of no-arbitrage. The concept of arbitrage is clearly
linked to market equilibrium. Specifically the arbitrage argument is that investment
portfolios that require no net investment should not have a positive return. The
arbitrage intuition is at the base of capital structure theory (Modigliani and Miller,
1958) the options pricing model, Black and Scholes (1973) and Merton (1973)
and the arbitrage pricing of Ross (1976). Nau and McCardle (1991) suggest that
the principle of no arbitrage is more fundamental than utility maximization and
that the LP (Linear Programming) optimization problem that maximizes expected
return is in fact the exploitation of arbitrage opportunities by rational agents. When
we allow short selling in the Digital Portfolio Theory model by letting the weights
in Equation (18) to be negative the solution includes short selling opportunities
and will generally contain all securities in the universe. In the Digital Portfolio
Theory model the K periodic variance constraints in conjunction with the return
maximizing objective represents a no arbitrage condition with respect to the pe-
riodic components of the portfolio’s stationary variance and cross covariance. A
particular investor’s optimal efficient portfolio will be uniquely defined by the
investors desired exposure to the K independent risk components. The desired
exposures to these components must dependent on factors such as the investor’s
holding period, purchase date and expectations about the existence of calendar
effects as well as overall risk exposure. It may be reasonable that objective of utility
maximization in Modern Portfolio Theory may be replaced by Arbitrage Pricing
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Theory with periodic optimally arbitraged portfolios found using the single period
Digital Portfolio Theory LP solution. Grinblatt and Titman (1987) suggest that
exact arbitrage pricing is equivalent to local mean-variance efficiency with respect
to a set of reference portfolios. These reference portfolios will be the K orthogonal
efficient portfolios that have no risk with respect to the other K − 1 periodic risk
components.

For example, suppose you are required to purchase an investment today and
your holding period is one year. It is a one period portfolio decision. In Modern
Portfolio Theory you determine your level of total risk exposure and compute your
optimal efficient portfolio. In Digital Portfolio Theory you consider your expecta-
tion about cyclical effects over your holding period. If your holding period is going
to include January you may increase your exposure to 1-year systematic risk. If
you believe that your holding period will be during a bear market, you reduce your
systematic risk relative to your unsystematic risk particularly for longer periodic
components. Digital Portfolio Theory is not a multiple period portfolio decision
model but the single period decision is based on timing considerations.

10. Conditional and Unconditional Efficiency

Conditional models allow expected returns and covariances to vary through time
(Harvey, 1989). Time-varying risk models used to test the conditional CAPM (De
Santis and Gerard, 1997) specify the dynamics of the conditional moments by
allowing correlations among asset returns to change with market conditions, while
assuming a covariance stationary process for the unconditional variance covariance
matrix. In the case where traders use information available at the time of trading
to condition historical movements, Hansen and Richard (1987) propose that there
is both an unconditional mean-variance frontier and a conditional mean-variance
frontier. The manner that estimates are modeled to vary through time generally
depends on past short-term forecasting errors. The inclusion of long memory com-
ponents of the variance is not included in conditioning. While Digital Portfolio
Theory is an unconditional model, a conditional model could be formulated by
conditioning the means and cross covariances.

Digital Portfolio Theory, because it includes autocorrelation in the one period
model, adds a new prospective to the idea of a conditional efficient portfolio. Rather
than condition on forecasting errors Digital Portfolio Theory allows conditioning
on the date or time location. The conditional information that will determine the
settings of the periodic constraints in (13) to (18) depends on the calendar date that
trading will take place and the holding period of the investor. Suppose that we as-
sume that processes are covariance and autocovariance stationary. Imagine that our
trading date is in the middle of December, it is at the beginning of a 4-year election
cycle and our holding period is two years. Additionally, suppose we believe that the
quarterly, yearly and four year anomalies, as observed in the literature will persist.
In this case we may want to increase our exposure to yearly risk and quarterly risk
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to benefit from the turn-of-the-year and beginning of the quarter effect but may
want to reduce our 4-year risk exposure since it is early in the election cycle. On
the other hand, suppose that our trading date will be the first of March in the second
half of a 4-year election cycle and our holding period is three months. Now we have
missed the turn-of-the-year effect and it is at the end of the quarter. We may want
to reduce our yearly and quarterly risk and increase our 4-year and 2-year risk to
benefit form securities with high longer-term variance contributions. The investor’s
trading date, holding period, and expectations about market direction and calendar
effects will condition the unconditional Digital Portfolio Theory model.

11. The Multiple Period Problem

Digital Portfolio Theory is a single period model allowing control of the level of
risk produced by various periodic variance components related to the autocorre-
lation. For example, the amount of 4-year variance in the solution portfolio can
be controlled even when the investor’s holding period is one month. In order to
solve multiple period problems it is necessary to start with a comprehensive rep-
resentation of the single period problem. The multi period model is complicated
by the interrelationship of the mean, variance, covariance and autocorrelation in
multiple periods. Intertemporal portfolio theory must consider the holding period
length, time horizon, number of portfolio revisions, and intermediate consumption
and liability streams. Multiple period theory must address the change in wealth
over time of the portfolio and the effect of autocorrelation on multiple time re-
lated decisions. Expected autocorrelation characteristics may be important for the
future investment decisions. The multiple period problem consist of a sequence
of decision problems that are contingent upon outcomes in previous periods and
on new information arriving. This problem is more complicated when autocorrela-
tion is present in returns since decisions in earlier periods must take into account
probability distributions in future periods.

Mossin (1968) and Chen, Jen and Zionts (1971) present a classic framework
for the mean-variance multi period problem by using backward recursion and dy-
namic quadratic programming. Their conceptually appealing formulation however
results in such a computational burden, particularly with transaction costs and large
number of assets, that it has remained impractical. Other studies of the multiple
period model include Smith (1967), Samuelson (1969), Merton (1969, 1972), Fama
(1970), Hakansson (1971a, b), Elton and Gruber (1974a, b, 1975), Winkler and
Barry (1975), Glover and Jones (1988), Mulvey and Vladimirou (1989), Dumas
and Luciano (1991), Ostermark (1991), Dantzig and Infanger (1993), Grauer and
Hakansson (1993), Gunthorpe and Levy (1994), Mulvey and Ziemba (1998), and
Grinold (1999). Assuming autocorrelations are zero Li and Ng (2000) proposed an
analytical expression for the multi period mean-variance efficient frontier but do
not find an efficient solution methodology.
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The purpose of this study is to present the single period model consistent with
periodic autocorrelation using signal processing. Digital Portfolio Theory model
is the first portfolio selection formulation capable of controlling components of
autocorrelation in a one period model. A multiple period model that permits re-
turns to have non-zero autocorrelatoin or assumes that investors have memory may
extend Digital Portfolio Theory to multiple periods. Digital Portfolio Theory has
several advantages to previous approaches to the multiple period problem. First
the representation of risk in the Digital Portfolio Theory model has distinct mathe-
matical advantages over previous formulations. Not only can risk be easily added
across securities in a portfolio as demonstrated in this paper but the multiplication
of stochastic risky return signals times stochastic monetary flows (convolution)
that occurs from one period to the next can be facilitated using the new digital
mathematics of linear systems theory. The multiple period stochastic maximum
flow network model seems to offer the ideal framework for formulating the mul-
tiple period problem. Previous attempts to utilize the multi period network model
have been restricted to scenario methods (see Mulvey and Vladimirou, 1991). The
signal processing representation of risk allows the distributions encountered in the
multiple period stochastic portfolio network models to be fully described.

The second advantage of Digital Portfolio Theory in it application to the multi-
ple period problem is that specific trading dates can be related to perceived calendar
anomalies and each period’s risk can be adjusted accordingly. Some Investors
may believe that some securities have returns that are temporally dependent in a
predictable pattern. For example, investors who believe regular calendar effects
exist. An optimal multiple period hedging strategy could be derived that would
consist of holding portfolios to maximize terminal wealth subject to multi period
periodic risk constraints. Suppose the investor will rebalance or trade every month,
then based on the calendar month and the calendar year the investor’s objective in
terms of risk exposure to calendar and non-calendar variance factors will change
every month and the solution portfolio will change. Because of the greater control
over the portfolio variance using Digital Portfolio Theory, the composition of the
selected portfolios will change faster than when the mean, variance and covariance
are the only factors being considered.

12. Estimating the Digital Portfolio Theory Parameters

In order to test Digital Portfolio Theory the periodic variance components and
phase-shifts for each security must be estimated. Twenty securities were chosen
at random from the S&P 500 securities. The S&P 500 market returns were used
as the index. The data was obtained from the Standard and Poor’s COMPUSTAT
database. Monthly returns over a 16-year period were used to compute the vari-
ance and cross covariance spectrums using a 48-month signal length. The Welch
(1967) method is one of the most useful of the new high resolution, small sample,
digital signal processing techniques for estimating the variance and cross covari-



308 C. KENNETH JONES

ance spectrum.2 This method was used to estimate the K periodic risk amplitudes,
Rk, and phase-shifts, θkmj. To implement the Welch method the sixteen years of
monthly raw returns from June 1977 to May 1993 were divided into 7 overlapping
segments of 48 months each. The 4-year signal length allows high resolution of the
variance spectrum for the periods shown in Table I. Because financial return signals
are masked to a large extent by noise, it is important that periods or frequencies are
chosen to correspond to the institutional structure generating the return signals. A
rectangular data window was used since it was anticipated that the return variance
spectrums would be relatively flat. The Welch method averages the Fourier trans-
form results to find the variance spectrum and the phase-shifts for each security
relative to the reference or index return signal.3

12.1. WINDOWING FINANCIAL SIGNALS

Windowing is used to control the effects of sidelobes in the spectral variance es-
timators. Volatility estimates adjacent to peak or true frequencies can be biased.
Leakage or aliasing to adjacent frequencies from peaks can mask or cancel out
weaker signals. Side lobe level can be smoothed using alternative spectral windows
but only at the cost of a reduction in spectral resolution. The rectangular window
gives the narrowest resolution but has the highest sidelobes. The triangular window
also called the Bartlett window and the squared cosine window called the Hanning
window will result in fewer sidelobes with lower resolution, (see Harris, 1978;
Parzen, 1957).

Window selection depends on weakness of the signal components being exam-
ined and the distance in frequencies between signal components. If there are strong
components separated by large distances in frequencies the triangular or Hanning
window should be used to diminish sidelobes. As spectrums become flatter the
importance of using the triangular or Hanning windows to reduce sidelobes is
diminished. The rectangular window is appropriate for financial signals with mod-
erate signal components spread over diverse frequencies. The rectangular window
is the most useful for security return data with high noise levels and therefore
flat spectrums. As shown in Table I financial signals have 4-year, 2-year and 1-
year ‘tones’ or frequencies relatively close together with 6-month and quarterly
frequencies a long distance apart. The rectangular window gives equal importance
to all frequencies and maximizes the resolution.

12.2. TRENDS IN RETURN SIGNALS

An important question in signal analysis is the desirability and feasibility of remov-
ing or filtering out trends. In order to improve the quality of the discrete periodic
variance estimates and to insure the return process is covariance stationary, some
researchers have examined the importance of removing the trend (see Watson,
1986). Large means and linear and higher order trends may bias the low frequency
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estimates of the variance of the process. However, trend removal can introduce er-
roneous peaks in the variance spectrum at low frequencies. Removal of the sample
mean is particularly undesirable when as in the case of financial return processes,
the noise level is high. Trends in mean may be related to the presence of long
memory that may in turn be responsible for changing variance (see Granger, 1988).

Mean-variance optimization is very sensitive to errors in the estimates of the
inputs. Britten-Jones (1999) found that the magnitude of the error in estimates of
the weights of the sample efficient portfolios is large. Chopra and Ziemba (1993)
showed that errors in means are eleven times as important as errors in variances
and errors in variances are about twice as important as errors in covariance on the
composition of the optimal mean-variance portfolio. In turn the value of the mean
for a series can be greatly affected by the presence of a single outlier. Trimming or
clipping may be use to remove outliers to produce more robust sample estimates
(see Kleiner, Martin and Thomson, 1979). No trend removal or clipping was used
and all estimates were taken directly from the raw security return time series to
develop the inputs to the Digital Portfolio Theory model for the test universe of 20
securities.

13. Comparing Digital Portfolio Theory to Modern Portfolio Theory

This section solves the Digital Portfolio Theory model with no short selling for a
small universe of 20 securities and compares the solutions to the efficient mean-
variance portfolios. A close approximation to the mean-variance efficient set of
portfolios can be found by forcing all periodic risk compenent to be equal. By
solving the Digital Portfolio Theory model (12) with the all the right-hand-sides,
bk, set equal, each of the periodic contributions to the risk of the portfolio is con-
strained at the same level. This approximates the mean-variance efficient frontier
since the expression for the portfolio variance (10) will be minimized when all K

of the systematic and unsystematic variance components are equal.

var(r̃p[n]) = 1

2
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Portfolio risk = 1

2
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((systematic riskpk)
2 + (unsystematic riskpk)

2) .

It is only an approximation to Modern Portfolio Theory since different securities
display differing levels of the periodic risk components and since the contribution
of each risk component to expected return may differ considerably for each se-
curity. By constraining each risk component equally we are forcing the solution
portfolio’s signal to have low autocorrelation and little or no memory.
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Figure 2. Comparison of efficient frontiers: Modern and Digital Portfolio Theory. The mean-
variance efficient frontier compared to the efficient frontier generated by the Digital Portfolio
Theory model found by constraining all the periodic portfolio variance components by the
same right-hand-side constant.

The no-memory Digital Portfolio Theory efficient portfolios are compared to
the mean-variance efficient frontier in Figure 2. In the low risk region, equally
constrained Digital Portfolio Theory gives an approximation to the mean-variance
efficient set but falls below it in every case. For medium risk the no-memory
efficient portfolios found using Digital Portfolio Theory model approach the mean-
variance frontier. For the high-risk portfolios, no-memory Digital Portfolio Theory
and Modern Portfolio Theory models pick the same securities. For the high-risk
investor memory or autocorrelation is not important and the solution is dominated
by high return securities.

Figure 3 gives some explanation of the performance. The number of securities
selected in the portfolios of the signal-processing model is less than or equal to
those selected by the mean-variance model. The smaller efficient portfolios found
in equally constrained Digital Portfolio Theory result from constraining risk si-
multaneously in multiple dimensions rather than constraining risk in only one
dimension in Modern Portfolio Theory.

Figure 4 demonstrates one distinct advantage of Digital Portfolio Theory. Ef-
ficient zero calendar risk portfolios can be solved for by setting the right-hand
side constants for one value of k equal to zero, bsk = buk = 0, while leaving
the other right-hand sides unconstrained in Equations (12)–(18). Independently
controlling the calendar and non-calendar risk of the solution portfolios is impor-
tant since traders can select efficient portfolios with risk characteristics that match
their expectations, holding periods and trade dates. In Figure 4, the 1-year zero
risk portfolio provides lower return than other zero risk calendar portfolios. An
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Figure 3. Number of securities in the efficient portfolios: Mean-variance and signal process-
ing. The number of securities in the efficient portfolios of the Digital Portfolio Theory model
is less than or equal to the number of securities in the Modern Portfolio Theory efficient
portfolios.

investor will have to sacrifice more return to hold the zero yearly risk portfolio
than to hold the zero quarterly risk portfolio using this security universe. The zero
yearly risk portfolio has less return because yearly risk contributes more to the
total risk of these securities than do the other calendar risk components. There was
no feasible solution for the zero two-year risk efficient portfolio from this small
security universe.

14. Conclusion

The signal processing portfolio selection model is a new approach that offers con-
siderable theoretical and practical advantages. Digital Portfolio Theory offers a
portfolio decision model that permits the investor to utilize memory by control-
ling calendar and non-calendar components of the efficient portfolio’s variance.
The signal processing description of risk gives a more detailed description of risk
that includes autocorrelation contributions. The introduction of the risk phasor or
vestor adds a new interpretation to systematic and unsystematic risk and allows
complex mathematics to be applied to risk analysis. The traditional mean-variance
portfolio selection model assumes that investors have no memory. By breaking
the portfolio variance into periodic variance components Digital Portfolio Theory
not only allows autocorrelation to be controlled in the efficient portfolio solution
but also allows control over systematic and unsystematic components of portfolio
risk. In addition, Digital Portfolio Theory reduces the number of terms necessary
to represent the covariance information and simplifies the quadratic expression of
portfolio variance in Modern Portfolio Theory by replacing it with a set of linear
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Figure 4. Efficient portfolios with zero calendar risk. The efficient portfolio characteristics
using Digital Portfolio Theory to force the periodic variance components of the efficient
portfolio to be zero for specific calendar periods.

constraints. The signal-processing model can be applied to large universes and
does not require any special structure of the covariance or autocovariance. The
maximization LP framework facilitates control over additional fundamental con-
straints and allows the addition of negative variables and integer variables to model
short selling and transaction costs. A comparison of efficient portfolios shows that
the signal-processing model can approximate the mean-variance efficient set with
smaller portfolios. In addition, it can identify portfolios with zero periodic risk for
calendar periods selected, based on the calendar expectations and holding period
of the investor. The paper has suggested potential areas for further research such
as solving for efficient pure calendar risk portfolios to be used in arbitrage pricing
and efficient zero unsystematic risk portfolios for capital market line estimation.
Using the signal processing representation of risk it may be possible to apply digital
mathematics to more complex financial systems encountered in multiple period
contexts.
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Notes

1 The Power Spectral Density (PSD) function of MATLAB can compute Fourier Transforms from
return series with calendar signal lengths.

2 MATLAB uses the Welch method to find the spectral density and allows rectangular and
Hanning windows.

3 Jones (1997) has developed a software package available to researchers based on Digital Port-
folio Theory (http://www.portfolionetworks.com). The software package can find efficient portfolios
from a universe of 8000 securities and uses the Welch method to measure risk.
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